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Introduction

Pressure-sensitive paint (PSP) is an optical pressure sensor that utilizes the oxygen

quenching of luminescence. PSP measurements in unsteady aerodynamic flows require fast time

response of the paint [1,2,3]. There are two characteristic time-scales that are related to the time

response of PSP. One is the luminescent lifetime representing an intrinsic physical limit for the

achievable temporal resolution of PSP. Another is the time-scale of oxygen diffusion across the

PSP layer. When the time-scale of oxygen diffusion is much larger than the luminescent

lifetime, the time response of PSP is controlled by oxygen diffusion. In a thin homogenous

polymer layer where diffusion is Fickian, the oxygen concentration ][O2 can be described by

the diffusion equation in one-dimension,
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where mD is the diffusivity of oxygen mass transfer in the polymer,t is the time, andz is the

coordinate normal to the layer. For an arbitrary time-dependent change of the oxygen

concentration at the air-paint interface, the complete convolution-type solution of Eq. (1) with

the suitable boundary conditions can be obtained by using the Laplace transform [4,5]. The

special trigonometrical-series-type solutions for a step change and a sinusoidal change of oxygen

were used for PSP dynamic analysis [1,2,3]. The solution of the diffusion equation gives a well-

known square-law estimate for the diffusion time-scalediffτ through a PSP layer,

m
2

diff D/h∝τ , (2)

whereh is the PSP layer thickness. The response time of a homogenous PSP is proportional to

the square of the layer thickness and inversely proportional to the diffusivity of mass transferDm.

This estimate is correct for a conventional homogenous PSP.
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Compared with a conventional PSP, a porous PSP has a much shorter diffusion response

time ranging from 18µs to 500µs [6]. The shorter diffusion time-scale is essentially related to an

enlarged air-polymer interface in a porous PSP. Interestingly, recent measurements of the

response time for three polymers GP197, GP197/BaSO4 mixture and Poly(TMSP) showed that

the classical square-law estimate (2) does not hold for porous PSPs [7, 8]. As shown in Fig. 1,

measurements gave the power-law relations 83.1
diff h∝τ for GP197, 07.1

diff h∝τ for

GP197/BaSO4 mixture, and 29.0
diff h∝τ for Poly(TMSP) at a temperature of 313.1K. For the

GP197 silicone polymer, the power-law exponent is close to 2 as predicted by the classical

estimate. However, the power-law exponents for the porous polymer materials GP197/BaSO4

mixture and Poly(TMSP) are significantly smaller than 2. In addition, Fig. 2 shows that the

power-law exponent for the polymer Poly(TMSP) linearly increases with temperature over a

temperature range from 293.1K to 323.1K. Unfortunately, a comprehensive and universal theory

of diffusion in porous materials has not been developed yet. In order to understand the time

response of a porous PSP, nevertheless, this note attempts to derive the expressions for the

effective diffusivity and the diffusion response time of a porous polymer layer from a standpoint

of phenomenology.

Effective Diffusivity

Diffusion in a porous material can be considered as a diffusion problem in a two-phase

system made up of one disperse phase and one continuous polymer. In PSP, the disperse phase

is composed of numerous pores filled with air. An element of a porous polymer layer of the

lengthl, width l, and thicknessh is considered, as shown in Fig. 3. The coordinatez is normally

directed to the polymer layer from the upper surface of the layer. We assume that many
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cylindrical (tube-like) pores are distributed in the element and the pores are oriented in thez-

direction. The effective radius and depth of a pore are denoted byporer and poreh , respectively.

The radius of a pore is much larger than the size of a molecule of oxygen. In general, the depth

of a pore is smaller than the layer thickness, i.e., hhpore ≤ . For simplicity of expression, the

normal directional derivative of the oxygen concentration ][O2 at the air-polymer interface is

denoted by

n
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∂
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The effective diffusivity meffD of the porous polymer layer with cylindrical pores is given by a

balance equation between the mass transfer through the apparent homogenous upper surface and

the total mass transfer across the air-polymer interface,
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where poreN is the total number of the pores in the element andmD is the diffusivity of the

polymer continuum. The integral term in Eq. (4) is the total mass transfer across the peripheral

surface of the pores in the element. Thus, the effective diffusivitymeffD is given by
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In a simplified case where ttancons(z)vn = across the thin layer, Eq. (5) becomes

hra21D/D 1
poreVmmeff
−+= , (6)
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where 12
pore

2
poreporeV hlhrNa −−= π is the volume fraction of the cylindrical pores in the

polymer layer. Eq. (6) indicates an increase of the effective diffusivity that is proportional to the

volume fraction of the pores and a ratio between the polymer layer thickness and the radius of

the pore. The expression (6) formeffD is valid only for an ideal porous polymer layer with the

straight cylindrical pores oriented normally. Nevertheless, this model should be generalized for

real porous polymers where topology of the pores is often highly complicated.

In a more realistic model, the topological structure of a pore is considered as a highly

convoluted and folded tube in the polymer layer while the cross-section of the tube remains

unchanged. The integral in Eq. (5) should be replaced by the integral along the path of the

highly convoluted tube-like pore. In this case, the concept of the fractal dimension should be

introduced because the length of the highly convoluted tube is no longer proportional to the

linear length scale of the tube in thez-direction (e.g. poreh ) [9]. According to the length-area

relation for a fractal path, the integral along the path is proportional to 2/d
pore

frA or frd
poreh , where

frd ( 2d1 fr <≤ ) is the fractal dimension of the path of the pore and 2
porepore hA ∝ is the

characteristic area covering over the path. Loosely speaking, the fractal dimension represents the

degree of complexity of the pore pathway. In order to take the fractal nature of the pores into

account, Eq. (5) is generalized by using a Riemann-Liouville fractional integral of the orderfrd ,

i.e., [10]
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Note that a unitary constant with the dimension ]m[ frd1− is implicitly embedded in the third

term in the right-hand side of Eq. (7) to make Eq. (7) dimensionally consistent. This

dimensional constant is implicitly contained in all the results derived from Eq. (7). In a

simplified case where ttancons(z)vn = across the thin layer, a generalized expression formeffD

is
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where )d1( fr+Γ is the gamma function. Here,poreh is interpreted as a linear length scale of

the convoluted tube in thez-direction and Va is the volume fraction of the apparent cylindrical

pores. The expression (8) clearly shows that the effective diffusivitymeffD is not only

proportional to frdh , but also related to the parameters of porosity 1
poreV ra − and h/hpore . For

1d fr = , Eq. (8) is simply reduced to Eq. (6).

Diffusion Time-Scale

For a porous polymer layer where diffusion is Fickian under some microscopic

assumptions [11,12], the diffusion equation (1) is still a valid phenomenological model as long as

the diffusivity mD is replaced by the effective diffusivity meffD . Hence, the estimate for the

diffusion time-scale for a porous PSP layer is
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Eq. (9), a generalized form of Eq. (2), clearly illustrates how the parameters of porosity1poreV ra −

and h/hpore , and the fractal dimension frd affect the response time of a porous PSP. For

1ra 1
poreV <<− or 1h/hpore << , Eq. (9) naturally approaches to the classical square-law estimate

(2) for a homogenous polymer layer. On the other hand, for 1ra 1
poreV >>− and 1h/hpore ≈ ,

another asymptotic estimate fordiffτ is a simple power-law

m
d2

diff D/h fr−∝τ . (10)

The estimate (10) is asymptotically valid for a very porous polymer layer. The exponent in the

power-law relation between the response timediffτ and thicknessh deviates from 2 by the fractal

dimension frd because of the presence of the fractal pores in the polymer layer. The relation

(10) provides an explanation for the experimental finding that the exponentq in the power-law

relation q
diff h∝τ is less than 2 for porous PSPs [7, 8]. Also, this relation can serve as a useful

tool to extract the fractal dimension of the tube-like pores in a very porous polymer layer from

measurements of the diffusion response time. The fractal dimensionfrd of the pore in the

polymer Poly(TMSP) is 71.1d fr = . For GP197/BaSO4 mixture, the fractal dimensionfrd is

close to one. In addition, based on the experimental results shown in Fig. 2, one knows that the

fractal dimension frd for the polymer Poly(TMSP) linearly decreases with temperature in a

temperature range from 293.1K to 323.1K. This implies that the geometric structure of the pore

in Poly(TMSP) may be altered by temperature change. Note that the diffusivitymD of oxygen

mass transfer is also temperature-dependent, but it is independent of the coating thicknessh.

Therefore, the experimental results in Fig. 2 mainly reflect the effect of temperature on the

geometric structure of the pores in the polymer rather than the diffusivity.
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Conclusions

The Note develops a simple phenomenological model for the effective diffusivity of a

porous PSP and gives a new expression that clearly illustrates the relationship between the

diffusion time-scale and the fractal dimension of the pores. The theoretical results can not only

explain why a porous PSP is able to achieve a very fast time response, but also quantitatively

show how the fractal dimension and the parameters of porosity affect the response time. For

very porous PSPs, the classical square-law estimate of the diffusion time-scale should be

replaced by the generalized relation derived in the Note.
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Captions

Figure 1. Power-law relationship between response time and coating thickness for three

polymers GP197, GP197/BaSO4 mixture and Poly(TMSP) at a temperature of 313.1K.

Figure 2. The exponent of the power-law relation between time-scale and coating

thickness for the polymer Poly(TMSP) as a function of temperature.

Figure 3. An element of a porous polymer layer.
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Figure 1. Power-law relationship between response time and coating thickness for three

polymers GP197, GP197/BaSO4 mixture and Poly(TMSP) at a temperature of 313.1K.
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Figure 2. The exponent of the power-law relation between time-scale and

coating thickness for the polymer Poly(TMSP) as a function of temperature.
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Figure 3. An element of a porous polymer layer.


